Wavelets: The Mathematical Background

ALBERT COHEN AND JELENA KOVACEVIC, MEMBER, IEEE

Invited Paper

We present here the mathematical foundations of the wavelet
transform, multiresolution analysis and discrete-time transforms,
and algorithms. This article serves as background material for the
rest of the special issue.

I. INTRODUCTION

When we deal with a given physical object, we encounter
many of its different faces or representations. For example,
we can represent numbers in various systems depending on
the application; in everyday life, we use the decimal system,
while for use in computers we employ the binary repre-
sentation. Consequently, in many fields, such as numerical
analysis or signal processing, a preliminary task is to find an
adapted representation of the signal that may be particularly
suitable for a problem at hand. For example, in images, one
of the common tasks is to attempt a representation that will
facilitate extraction of features.

A way to obtain a specific representation is to decompose
a signal z into elementary building blocks z;, of some
importance, as follows: & = ¥;z;, where the z; are simple
waveforms. Moreover, one may want that these waveforms
have a specific “physical” interpretation. For example, in an
image the blocks might correspond to textures and edges.

How do we practically decompose a signal? We need a
fast algorithm in order to do it, since otherwise a particular
decomposition/representation might be only of theoretical
importance. Once we have the building blocks, we might
attempt yet another task: approximation, that is, we try to
get as good a rendition of the original signal as possible
with only a few of the building blocks. The multiresolution
concept, which will be defined later, allows us to do
this in a natural way: we approach the original signal by
successively adding details to it, that is, by successively
refining it.

One of the classic tools to achieve such different rep-
resentations of a signal is the Fourier theory, for which
we have a whole arsenal of tools at our disposal: from
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Fig. 1. Basis functions and corresponding tilings of the
time-frequency plane [12]. (a) Short-time Fourier transform and
(b) wavelet transform.

the purely continuous time, such as the Fourier integral,
to discrete time and the fast algorithm to implement such a
representation—fast Fourier transform (FFT) algorithm. Al-
though the algorithms differ, the underlying mathematical
ideas are the same for all these representations.

If we are given a pure frequency signal ¢**, Fourier-
based methods will isolate a peak at the frequency w.
However, already when confronted with the case of a signal
built of two pure oscillations occurring in two adjacent
intervals (that is, ™'y, 5)(t) + €™2fj, 4(t)), we run
into problems: we obtain two peaks, without localization
in time. This immediately points out to the need for a time-
frequency representation of a signal which would give us
local information in time and in frequency. In the Fourier
case, it is obvious that we need a more local waveform
to achieve this. The most intuitive way to overcome this
obstacle is to localize the sinusoids in the Fourier repre-
sentation by windowing, that is, the building blocks now
become w(t — 7)e*t, where w(t) will denote a window
with -compact support allowing for time localization. We
have thus obtained the windowed Fourier transform, or the
short-time Fourier transform. ;
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Let us take a look at what we have achieved; to that
end, we will introduce the concept of the time-frequency
plane, and we will loosely show where the building blocks
reside in this plane. We will see that the building blocks
used in different decomposition techniques “tile” the time-
frequency plane in different ways. Note here that it is
not possible to obtain arbitrarily fine localization in time
and in frequency due to the uncertainty principle. Also
note that we will always be looking for a representation
or a decomposition that is linked to a fast algorithm
so that the scheme is implementable. Fig. 1(a) shows an
example of the time-frequency plane tiling for the short-
time Fourier transform (STFT). The shaded squares in the
figure correspond to waveforms which are localized in
the same time interval [T, T,AT] and in three adjacent
frequency levels.

In this representation we have fixed both the level of
time and of the frequency localizations. Wavelets offer a
different compromise: the frequency localization is loga-
rithmic, that is, proportional to the frequency level. As
a consequence time localization gets finer in the highest
frequencies. Such a situation is given in Fig. 1(b).

Ultimately, one would like to obtain an “arbitrary” tiling
of the time-frequency plane. The wavelet theory based
on the multiresolution analysis (MRA) concept and its
generalizations offer a natural way to achieve this. An
example is given by wavelet packets, or arbitrary trees.
A more detailed discussion of wavelet packets is given by
Hess—Nielsen and Wickerhauser [1].

The outline of this paper is as follows: Section I gives
an overview of the continuous and oversampled wavelet
transform. Section III discusses how, by sampling the con-
tinuous wavelet transform, we obtain orthonormal wavelet
bases. Multiresolution analysis, as a framework for studying
wavelet bases, is also presented in this section. Finally,
Section IV deals with discrete-time wavelet representations,
filter banks, and fast algorithms.

II. CoNTINUOUS AND OVERSAMPLED
WAVELET TRANSFORM

The most natural way to obtain a time-scale represen-
tation as described in the previous section is to define a
family of functions

1 t—b
)= — , 0,beR
¢'a,b( ) \/E’l/)< a ) a> €
where 1 is a fixed function, called “mother wavelet,” that
is well localized both in time and frequency, i.e., we can
ask that

WO <@+ 1) [P < el +[w) 7
for some ¢> 0. Here, ((w) = [T o(t)e=* dt is the

(o]
Fourier transform of 1. The factor 1//a ensures that the
functions ), ; have a constant norm in the space La(R) of

square integrable functions, that is, functions f such that

+o0
I711? = / FO) dt < +oo. M

oo
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Fig. 2. A few wavelets obtained from the mother wavelet
o) = (1 — 2t2)e=t" = 1(t), which is the second
derivative of a Gaussian. Displayed are (from left to right):
V(as2),~2() ¥1,0(t), Y14y 0272

We recall that this space is a Hilbert space, with the
scalar product defined as

(f,9) = / F(t)9T8) dt.

In this context, we define the continuous wavelet trans-
form of a function f € Ly(R) as

Tf(a,b) = (f, Yap) = % / f(t)w(f‘—”) i @

a

Here 1, 5 plays the same role as et in the definition of
the Fourier transform. The existence of an inverse transform
depends on the choice of 1. More precisely, if 1 is such that

+o0 1.7 2
cw:/ LC)] 3)

—oo |l

then f can be reconstructed by
te da [T

so=cit [5G [ riahtae e @
0 —~o0

that is, the truncated integral

A B .
[ daa* [ Toa bt d
1/A -B
converges to Cy, f(¢) in Ly(R) as A and B go to +oo. Note
that condition (3) implies in particular that ¢)(0) = 0 so that
% oscillates, that is, f P dt = 122(0) = 0. More generally,
one can impose more cancellations on v, in the sense that
[(d/dw)*4](0) = 0 = [ t*4p(t) dt, for k = 0,1.-- N.

Fig. 2 displays examples of wavelets obtained with the
mother wavelet ¢(t) = (1 — 2t2)e~*, which is the second
derivative of a Gaussian. In that case, one has [ ¢ (t) dt =
J tp(t) dt = 0, that is, N = 1.

An important consequence of the cancellations of v is
that the values of T'f(a, b) are influenced by the regularity
of the function f. To be more specific, for any o > 0, we
say that f is a-Holder regular at some point ¢g if and only
if there exists a polynomial P(t) of degree n < «, such that

|f(t) = P()] < Calt — to]™. ®
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Fig. 3. Time-scale tiling for a smooth function with an isolated
singularity. The vertical axis represents either increasing frequency
(f) or decreasing scale (1/a).

Note that this property is satisfied in particular when f is
m-times continuously differentiable in a neighborhood of ¢y
with m > o (by taking P(t) = So<r<al(d/dt)* f(te)((t —
to)*/k!)). Note also that for o <1, one can only take
P(t) = f(to). If ¢ has cancellations up to some or-
der N > « — 1 and sufficient decay at infinity so that
| w(@)|¢|* dt <400, we can use (5) to derive

T A )] =10, o] = [(F — Popas)]
+o00
<q / It — to]*[an (D)) dt

-0

+oco
=cl¢a] lay + b — tol[$(y)| dy
+o0
<Owa / (lal®y]® + b - tol) ()] dy.

We see here that if we impose |b — to] < Csa, then
we have |T'f(a,b)| < K|a|*t(1/2). This shows that as the
scale a goes to zero, the amplitude of T'f(a, b) in the region
|b — to] < Ca decays very fast if f is regular at ¢o, slower
if f has some singularity at this point. This property of the
wavelet transform is illustrated in Fig. 3; the darker regions
of the time-scale tiling correspond to larger values of the
wavelet transform. :

In practical applications, in particular those involving fast
algorithms, the continuous wavelet transform can only be
computed on a discrete grid of points (an, by, )nez. How
should one choose this sampling so that it contains all the
information on the function f?

A simple example gives us a hint: consider the case where
4 is simply defined by

7 — 1 |w' € [17‘10]
¥(w) 0 elsewhere
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for some ag > 1. Since, in that particular case, fungtiqn
fa defined by fo(t)2Tf(a,t) is band limited by ¢(w)
to [—(ao/a),—(1/a)] U [(1/a),(ag/a)], it is completely
determined by its samples f,(na/m(ao — 1)),n € Z.
Moreover, the frequency axis is tiled by the intervals
[~af, —ag ] U [ag~%,a8],n € Z, so that f can be
recovered from the data of f,, = fur,n € Z.

This simple case shows that a natural sampling
for the continuous wavelet transform is - given by
Tf(ag, magbo),n,m € Z, for some fixed ag> 1,09 > 0.
For a more general wavelet ¢, we can now define

Dnm(t) = ag*P(alit — bom),

where we have fixed the parameters ag > 1 and b > 0.
Given such a family, two questions are of importance:
 Does the sequence ((f, ¥ m))n,mez completely char-
acterize the function f?
¢ Is it possible to recover f from this sequence in a
" stable manner? ’

n,mel’

To answer these questions, it is necessary to introduce
the concept of a frame that we briefly review in an abstract
setting.

A sequence (e, )nez in a Hilbert space H is called a
frame, if and only if, for all x € H, one has

Allz|® <Y (@, en)” < Bllzl? (6)

ncl

where the frame bounds B > A >0 are independent of
z. To such a sequence, we associate the “frame operator”
F that maps any z € H into a square-summable sequence
({z, en))nez and its dual operator F* that maps any square-
summable sequence (&, )nez 1010 T = Xpez Tnen.

The inequalities in (6) can be directly expressed in terms
of the positive hermitian operator F*F

Ald < F*F<BId )]

in the sense that A(z,z) < (F*Fz,z) < B(z,z) for all
z € H. This shows in particular that F™*F is invertible
so that we can define a sequence (€,)ncz by €, =
(F*F)le,. ‘

Since we have

(0,80) = {2, (F*F)~ey) = {(F*F) "z, c,)

it follows that (€, )nez also constitutes a frame (it is called
the dual frame) with bounds A=1 > B~1>0 and the
associated frame operator £ satisfies F' = F(F*F)™! so
that we have

F*F = (F(F*F)"\)'F = (F*F)"Y(F*F) =1d

and similarly F*F = Id. This means that any x € H can
be expressed as

z = Z(x,en)én = Z(x,én}en.
ncl nez - :
To reconstruct z, it is thus sufficient to know the dual
frame (€, )nez, that is, to invert F*F. This can be done by
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a fast algorithm, remarking that we have

F*F = —A—;E(Id ~R)

where the residual operator R = Id—2/A+ BF*F satisfies

A—-B
R|| < 1
IRl < 555 <
according to (7). We thus have
2
* -1_ __“ 2 . 8
(F*F) A+B(I+R+R +0) 1))

meaning that we can approximate (F*F)~! by truncating
this series at a certain order depending on the desired
accuracy. Note that the convergence of (8) is very fast when
the frame bound are “close” in the sense that A — B <
A+ B. :

We now return to the particular case of the wavelet family
(¥n,m)n,mez- In that case, a criterion for the existence of
frame bounds was derived by Daubechies [2] under the
assumptions

0<er £ Z [h(alw)]? < ea < + 00
n€z

and

Bv) =sup Y [d(agw)d(agw + )| < C(L+ )71

wek ez

for some ¢ > 0. The frame bounds are then given by

2w ‘ 2T 27 1/2
a=ioie 2 [o(0)e(50)]

kez{o}

1/2
o<t B, M2
0 keZ—{0} kO 0

under the condition that A is strictly positive. One can
check that this is always the case when bg is smaller than a
certain threshold b, (recall that ¢; > 0). Moreover the ratio
(A— B)/(A+ B) tends to zero when ag — 1 and by — 0.

Note that the dual frame ¢ = (F*F) 14y 1 will
not be generated by the translates and dilates of a mother
function ¢, in general. However, in the case where A=B
we simply have ¥, m = A~ %, . By renormalizing the
Yn,m, We obtain A = B = 1 and thus for any f € L2(R),
we have

f= Z <fa"/)'n,m>¢n,m- ®

m,n€l

In that case {1nm }n,mez is called a tight frame. Al-
though the expansion (9) is similar to the decomposition
of f in an orthonormal basis, it is redundant in general. In
particular, we have remarked that (4 — B)/(A+ B) can be
made arbitrarily close to zero, and thus A and B arbitrarily
close to one after renormalization, by choosing ag and bg
close to one and zero, respectively. This precisely means
that we oversample the continuous wavelet transform on a
very dense grid.
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Is there any specific advantage to such an oversampling,
in comparison to the decomposition in an orthonormal
basis? The following simple example illustrates an impor-
tant advantage of redundancy: consider in R? the basis
e1 = (1,0),e2 = (0,1) and the tight frame consisting of
the vectors fi = e1/V?2, f2 = es/V2, f3 = (e1 + €2)/2,

and f4 = (e; — ep)/2. Any vector z can thus be written
T = (z,e1)er + (x,ea)er (10
or '

x = (z, f1)f1 + (z, fa) fo + (2, fa) f3 + (2, fa) fa. (A1)

Assume now that x is known up to a noise described as a
random variable N (w) with a Gaussian, centered, and radial
distribution. The resulting error on the samples (z,e;) (or
(z, f:)) is a centered Gaussian scalar variable of variance V'
(or V/2). If these samples are evaluated independently, the
mean squared error of the reconstruction by (10) is given by

e = E(|lme1 + maea|®) = 2V
whereas, in the case of (11), we obtain

e=E(|mfi +mafi +usfr + mafil?) = V.

This example reveals one of the main interest of over-
sampling with a frame: the reconstruction mean square error
due to noise can be reduced by a factor which is precisely
the oversampling rate. We now turn to the construction of
nonoversampled wavelet families, that is, wavelet bases.

III. MULTIRESOLUTION ANALYSIS AND WAVELET BASES

By adding more restrictions on the sampling parameters
ag and by, as well as on the choice of the wavelet 7, it
is possible to remove the redundancy in the reconstruction
formula (4), so that it may be regarded as the expansion
of f in a basis. Since functions usually live in infinite
dimensional spaces, statements such as the La-stability of
a basis {en }nen, that is, the existence of two constants
C > ¢>0 such that

cZ]an|2 < /|Zanen(t)|2 dt<CY lan> (12)

independently of the choice of the coefficients a,, have
important consequences on the numerical applications of
these expansions.

However, note that (12) is immediately satisfied in the
case of an orthonormal basis (one has then an equality with
¢ = C = 1). Such bases can be obtained for the particular
choice ag = 2 and by = 1, that is

Wi (t) = 20/24p(27t — k)

The oldest example of such bases is certainly the Haar
system, where the wavelet 1 is a piecewise constant func-
tion such that ¢»(¢) = 1 on [0,1/2[, —1 on [1/2, 1] and zero
elsewhere. The proof that this particular system constitutes
an orthonormal basis is interesting in itself, since it contains
several important features of the general theory.

hkeL. (13)
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Fig. 4. A few of the Haar basis functions. From left to right:
“Mother wavelet” g o(t) = (t),¥2,2(t), its shifted version
d)g){;(t) and 1ﬁ_111(t),

First, one checks that these functions are orthonormal
with respect to the scalar product (f,g) = [ f(¢)g(t) dt.
Indeed, they are normalized by the factor 27/2; for a fixed
J the functions 1/, » have nonoverlapping support and are
thus trivially orthogonal; for j' > j, the wavelet 9; ; has
a constant value along the support of 1, ;s so that the
integral of their product is zero. Fig. 4 displays some of
these different possible situations.

In order to check that these functions constitute a basis,
it remains to show that any function f in Lz(R) can be
expanded as a combination of v, of the type

F=3 {f dintie (14)

J,k€ez

At this point, it is useful to introduce a piecewise constant
approximation A;f of f given by the average a; of f on
each dyadic interval I, , = [277k,279(k + 1)),k € Z, that
is .

ajk = Ajf/]],‘k = 2]'/1‘ f(t) dt.
3k

We remark that the average a;; is also the average of
the averages on the two half intervals, that is (aj41,2 +
@j41,2k+1)/2. The reduction to I, of the difference be-
tween A;11 f and A; f is therefore a multiple of 1); x; from
this, it is clear that the details between two successive levels
of approximation can be expanded in terms of wavelets,
that is

Apif = A8 = dintbin
k

as illustrated in Fig. 5. It is also easy to check, from the
definition of A; f, that we have d; x = {f, ;).

For any 1, we can thus obtain A;, f by taking a coarser
approximation A, f, jo < j1, and adding a combination of
wavelets at intermediate scales, that is

Jji—1
Ajf = A F 4D i)y (15)
Jj=Jo k€Z

The expansion (14) follows from (15) by letting j; or jg

go to +00 or —oo, respectively. However it is important
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Fig. 5. Pictorial proof that the Haar system is an orthonormal
basis. A;f is a piecewise constant approximation of f on the
interval [277k, 277 (k 4 1)), and similarly for A;41 f, except on
intervals half the size. The difference between two approximations,
Ajy1f — A;jf, is a linear combination of Haar basis functions.

to remark that in most practical applications, one is only
interested in a decomposition of the type (15) that is, within
a finite range of scales: on ore side, it is of no use to go
to very coarse scale when the function to be analyzed has
a limited support; on the other side, one mostly deals with
sampled data which can express the approximation of a
function (for example, in some applications of numerical
analysis of partial differential equations) or purely discrete
information (for example, in digital signal processing), so
that 7; is also finite.

The functions of the Haar system suffer from a major
disadvantage for many applications: as they are discontin-
uous and cannot provide a good approximation for smooth
functions, it is often preferable to use schemes in which
the derivatives of A;f approximate those of f. One of the
main goals of the theory of wavelet bases is to construct
systems that have the same multiscale structure as the Haar
basis, but that are generated from more regular functions,
so that they allow better approximation. A direct method
{(although somewhat ad hoc) is due to Meyer [3] and
consists in designing directly the wavelet ) in such a way
that orthonormality and completeness are achieved for the
system (13). Another strategy, which seems more relevant
for numerical applications, consists in generalizing the
multiresolution approximation operators A; by introducing
a new concept that we now describe.

We call multiresolution analysis a sequence of approxi-
mation subspaces {V;};cz of L(R) such that the following
requirements .are satisfied:

1) The V; are generated by a scaling function ¢ €
Ly(R), in the sense that, for each fixed j, the family

ip(t) =220t —k) kel

spans the space V; and satisfies the Ly stability
condition (12) (that is, the @,k € Z, constitute
a Riesz basis for V}).

PROCEEDINGS OF THE IEEE, VOL. 84, NO. 4, APRIL 1996
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Fig. 6. Three examples of scaling functions. (a) Scaling function that generates approximation
spaces of piecewise linear continuous functions. (b) Dual scaling function of the scaling function

in (a). (c) Example of an orthonormal scaling function [10].

2) The spaces are embedded, that is, V; C V1.

3) The orthogonal - projectors P; onto V; satisfy
lifnj__,+oo ij = f and limjﬁ_oo P]f = 0 for all
f € La(R).

From this definition, it follows clearly that f € Vj is
equivalent to f(2-) € V;41 and that V; is invariant under
translation of 2~7. From 2), we also see that ¢ is the
solution of a two-scale equation

p(t) =2 hln]p(2t — n). (16)

nez

These spaces can be used to build approximation opera-
tors that generalize the previous A;. In the case where the
integer translates of ¢ are orthonormal, we can take the
orthogonal projection

A=Y ein) ek

kez

Note that this is the case for the piecewise constant
approximation, with ¢ = 1 on [0, 1[, and zero elsewhere.

In the case where they only constitute a Riesz basis,
one can either orthonormalize them and define A; in the
same way, or construct a dual scaling function ¢ such that
(p, (- — k)) = 8o and define an “oblique projector”

Aif =) (@) Pike

kez

COHEN AND KOVACEVIC: WAVELETS: THE MATHEMATICAL BACKGROUND

In this more general framework, it is important to re-
quire that the-dual scaling function also satisfies a scaling
equation

B(t) =2 hln]p(2t —n). an

nel

Fig. 6 shows three examples of scaling functions: ¢1 gen-
erates approximation spaces of piecewise linear continuous
functions, but its integer shifts are not orthonormal. 5 is a
dual scaling function for 1, that is, {¢1(-—k), p2(-—£)) =
8k ¢. (Note that there are other dual scaling functions for the
same 7). Finally 3 is an example of orthonormal scaling
function, that is, (p3(- — k), 3(- — £)) = Or.e.

It is clear that ¢; can be defined explicitly as

w1(t) = max{0,1 — |¢|}.

In contrast, w9 and 3 have no explicit expression: they
are defined as solutions of the scaling equation (16) with
specific choices for the coefficients h[n]. This approach is
very relevant for practical applications because only these
coefficients are used in the decomposition and reconstruc-
tion algorithms that we describe in the next section.

Moreover, several properties of the scaling function can
be prescribed by imposing constraints on the coefficients:

* ¢ will be real valued and compactly supported if and

only if the nonzero h[n]’s are real and finitely many,
respectively. Moreover, the length of the sequence h[n]
.equals the size of the support of .
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* A necessary condition for the orthonormality of ¢ is
2" hin]hln + 2k] = 6k
nel
and a necessary condition for the duality of ¢ and ¢ is

2> " hin]

ne’

7L+2]€ —5k0

Moreover, these conditions become sufficient under
some additional technical assumptions [2], [4].

o If hl[n] have sufficient decay (for example,
[hn]| < c27%"), a necessary condition for ¢ to
be N-times differentiable is that the 2w-periodic
function mg(w) = Spezh[n]e™ has a zero of order
N + 1 at w = 7. Thus we can factorize mg(w) as

iw V1
mo(w):<1+2e ) p(w) (18)

where p(w) is a 2w-periodic smooth function.
Conversely, an important problem is to recover the
regularity properties od ¢ from the properties of h[n].
Note that when p(w) = 1, the choice mo(w) =
(1+¢e™ /2)N+1 corresponds to the basic spline scaling
function @y 11 = (¥)N+1xo,1) which is in CV~! and
satisfies | ('y;" (1) — oy (f2)] < easalts — tal-
For more general cases, one can estimate the exact
regularity of ¢ through a careful study of the residual
factor p(w). Note also that the scaling function imposes
the normalization X, h[n] = mo(0) = p(0) = 1.
Once scaling functions have been constructed, the deriva-
tion of wavelets is straightforward. One simply defines

glnl = (=1)"h[1 = 1], G = (=1)"h[1 — ]
and
—229 (2t —n), ¥(b) Zgn]cp?t——n)
nel nez

19

_ In the orthonormal case, one simply has ¢ = @, h[n] =
h[n], g[n] = §[n] and ¢ = <. With these deﬁmtlons (19),
a direct computation shows that

Aj+1f - A]f = Z<f7 &j,k)dj]}k
kezZ

so that we obtain multiscale decomposition that are similar
to (15) and (14). Moreover, one has
(5,6, g0 w) = 85,560
and the whole system {%; s } ;, xez constitutes a Riesz basis
of Lyo(R) [4]
We end this section by mentioning the most frequently

used generalizations of the previous concept to the analysis
of multivariate functions:

* The full tensor-product basis can be deﬁned as

‘l’i;. I (tlv o 7tn) :¢j1,k1 (tl) o "lal’yjn,k,1 (tn)y
jl?"'ajn,kla"'akn €z
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This basis is highly nonisotropic since its elements may
contain very different scales in different directions.

* The tensor-product multiresolution analysis V; gener-
ated by the scaling functions

D)k n (B, s tn) = ik (B1) -+ 05 1 (En)
ki, kn €7
leads to a different wavelet basis
‘I/;:kl,"‘5kn (1, ytn) = Q/)J k1 (t1) -- d);,nkn (tn)
€€ {071}71_(07,0)
klv"Wkn € z

where we have set ¥ = ¢ and ¢! = . In that
context, each function ¥€ is used to characterize the
details in certain directions.

* Finally one can generalize the concept of multiresolu-
tion analysis by replacing the dilation factor two by a
dilation matrix D with integer entries and eigenvalues
A1, -, A, that satisfy |[A;[>1. In that case, it is
easy to see that one needs |det D| — 1 wavelets to
characterize the details. However, one has to generalize
in a nontrivial way the analysis of orthonormality,
biorthogonality and smoothness that was done in the
1-D case [5], [6].

IV. DISCRETE-TIME WAVELET REPRESENTATIONS
AND FAST ALGORITHMS

We have seen in the previous section how, by adding
more restrictions on the sampling parameters g and by
as well as on the choice of the wavelet 1), we obtained
a nonredundant representation through an orthonormal or
biorthogonal basis. However, the question of computation
still remains open. Mallat proposed an efficient discrete-
time algorithm for the computation of the wavelet series
given in Section III [7]. We assume that the multiresolution
analysis axioms hold and we start with a function f(¢) in V;

+0co

f&y= 3 fPhlp2't - n)
where f[n] = 27(f(t), (27t — n)),n € Z. Using (16)
and (19) we obtain that the projections on V;_; and W;_;,
that is, fU~[n] and dU~Y[n], are given by

th 2n] £ 9 [k]
Zg —2n fD[k].

In signal processing terms, the coefficients of the pro-
jections onto V;_1 and Wj.1, are obtained by filtering by .
h[-n] and g[—n] and downsampling by two. Repeating
the process on =1 [n], we obtain projections onto Vi-2
and W;_, and so on. The reconstruction algorithm can be '
derived from (16) and (19)

FUH ) _Zzh n — 2k] fO[k]

f(J 1)

dU— 1)

k] +2 Zg[n — 2k)dD[k].
(20)
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Fig. 7. The reconstruction part of Mallat’s algorithm and its filter
bank implementation.

Here, the sequences () and d) have been refined by
inserting zeros between each two samples and filtering with
h[n] and g[n]. The whole process can be depicted as in
Fig. 7. (Note that in Section IIl we used notation d; .
Here we use d\/)[k] to be consistent with the discrete-time
notation.)

In the signal processing literature, the two branches with
filtering followed by downsampling by two together with
upsampling by two and filtering, are termed a filter bank.
Thus Fig. 7 gives a filter-bank implementation for the
Mallat’s algorithm. This was one of the key connections
between the wavelet theory and multiresolution filter bank
schemes studied in the digital signal processing literature
[8]. Another link was provided by recognizing that the
Laplacian pyramid scheme of Burt and Adelson [9] could
also be seen as a vehicle for the multiresolution analysis,
since it involved a hierarchy of averages as well as their
differences. The final piece was found when Daubechies
[10] and Mallat [11] showed how to go in the other direction
as well; that is, the possibility of constructing wavelet bases
starting from the discrete filters. Specifically, if we iterate
the reconstruction algorithm on an initial Kronecker delta
sequence f(O[k] = 6o at the scale j = 0, we obtain at
each step a sequence that is sampled on a twice finer grid.
Such a refinement is also used in computer aided geometric
design as a “subdivision scheme.” The question now is
under which conditions this process converges to a limit
function, and when it does, whether this limit function is
regular or not. A filter having the above properties is termed
regular. Daubechies [2], [10] gives a sufficient condition for
regularity; if the lowpass filter has a certain number of zeros
at the aliasing frequency =, that is, we have the factorization
(18), and if the remainder factor p(w) is well behaved,
then the process will converge to a regular scaling function
©(t). The wavelet 1(t) is then easily obtained using (19).
There exist various methods for designing regular filters
that would lead to bases with a certain regularity index [4],
[101, [12] as well as regularity testing procedures [10], [13].
Most of them use available tools for imposing a sufficiently
high number of zeros at aliasing frequencies [8].

We can now formalize the above procedure as the
discrete-time wavelet series (sometimes also called discrete-
time wavelet transform) [14], [15]. We will define the
discrete-time wavelet series over J octaves and the dyadic
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Fig. 8. Implementation of the “algorithme & trous.”

sampling grid as

J
afn] =3 > vk - 27k]
i=1keZ
+ 3 XD KR - 27k) @1
kez

where

XD[2k +1] = gDk — 1), 2[1)), j=1,---,J 22
X2k} = (R [27k - 1), =[1]) 23)

and h[n] = h[-n],d[n] = g[-n]. Here, h)[n] is the
equivalent filter in the lowpass branch after j steps of
iteration, This tells us that the family of “discrete wavelets” -
{GD[27k - ,hD[27k = |}, j=1,---,J,and k € Z, is
an orthonormal basis for I5(Z) [14], [15].

Note that until now, the schemes we presented were all
time variant. What if we need a time-invariant system?
A way to obtain it is to compute all the integer shifts,
that is, avoid downsampling. We do obtain a time-invariant
scheme, however, we pay a price; our system is oversam-
pled now. Fig. 8 shows the resulting scheme. At scale 1,
the z-transform of the equivalent filter is

i—1 =2 ¥4
Gi(2) =G ) [[HE).
=0

This algorithm was named “algorithme a trous” (algo-
rithm with holes) [16] and owes its name to the fact that
one can take advantage of the filters being upsampled, that
is, having zeros in between their samples.

An interesting generalization of these filter bank trees is
that of wavelet packets, which can be described as arbitrary
tree-structured filter banks, producing more general tilings
of the time-frequency plane [1], [8].
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